Abstract

This work describes a voltammetric electronic tongue, in which the quantitative information contained in voltammograms obtained from amperometric sensors is firstly extracted employing the discrete wavelet transform (DWT) and then processed employing artificial neural networks (ANNs). The analytical case studied is the direct determination of the oxidizable aminoacids tryptophan, cysteine and tyrosine, and its application in the direct measurement of these amino acids in animal feed samples. A conventional voltammetry cell with a Pt working electrode is the experimental set-up and differential pulse voltammetry the selected technique. Due to the complexity of the obtained signals, the DWT pre-treatment was needed in order to eliminate noise components and compress voltammograms by selecting and extracting significant information. The ANN was subsequently used to model the system departing from the reduced information, and obtaining the concentrations of the considered species. Best results were obtained when using two hidden layers in a backpropagation neural network trained with the Bayesian regularization algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.