Abstract

Analytical models or abacus are of importance to predict explosion effects in open and congested areas for industrial safety reasons. The goal of this work is to compare overpressure and flame speed values of small-scale deflagration experiments to predicted values from the TNO multi-energy (TNO ME) method and the Baker-Strehlow-Tang (BST) method. Experiments were performed in cylindrical congested volumes of hydrogen – air mixtures varying from 1.77 L to 7.07 L. The reactivity was controlled by the equivalence ratio of hydrogen-air mixtures, ranging from 0.5 to 2.5. The congestion was realized with varying numbers of grid layers and configurations. The influence of the obstacle density and the importance of the mixture reactivity to choose the strength index in order to predict the effects of an explosion has been highlighted for the TNO ME method. Predictive flame speed values from the BST method are in accordance with almost half of the experimental results and the method is conservative in most tested configurations. The use of the TNO ME method has been validated on a small-scale experiment to predict maximal overpressures generated by the deflagration of medium and large-scale H2/air clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.