Abstract

Metrological support creation and use of heat transfer etalons are important stages in the development of modern materials science. This is especially concerned to the emergence of new materials in the world with previously unattainable thermophysical parameters. The purpose of this work was to develop and experimentally verify the idea of joint application of the transient gratings method which is well-known in nonlinear optics and the single thermal diffusivity etalon of conventional type for the heat transfer metrological control in materials of a wide values range. The method proposed is based on thermal diffusivity etalon application as a source of calibrated optical signals that are excited in it by short laser pulses. Their lifetime is formed by the etalon thermal diffusivity and on the transient grating spatial period. The etalon linear graph of gratings lifetimes as a function of the gratings periods squared and grating lifetime of the material under study are used for the thermal diffusivity calculation. Thermal diffusivity of thin sub-surface layers of the samples under study – duraluminium, monocrystalline silicon and thermoelectric lead telluride film was measured. The results obtained are in close agreement with the reference values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call