Abstract

Molecular-dynamics simulations of the pressure-induced structural changes of amorphous Si have been performed using the Tersoff interatomic potential to examine the validity of this potential. Amorphous Si with a tetrahedral network was prepared by melt-quenching methods, and it was then compressed under isothermal–isobaric conditions. The changes of the atomic pair-distribution functions and static structure factors with increasing pressure were in agreement with those observed experimentally. The pressure-induced amorphous structures contained a short-range order similar to the β-tin and Imma structures. These results suggest that the Tersoff potential is suitable for describing the structural changes of amorphous Si under high pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.