Abstract
Alternative land management practices such as conservation or no-tillage, contour farming, terraces, and buffer strips are increasingly used to reduce nonpoint source and water pollution resulting from agricultural activities. Models are useful tools to investigate effects of such management practice alternatives on the watershed level. However, there is a lack of knowledge about the sensitivity of such models to parameters used to represent these conservation practices. Knowledge about the sensitivity to these parameters would help models better simulate the effects of land management. Hence, this paper presents in the first step a sensitivity analysis for conservation management parameters (specifically tillage depth, mechanical soil mixing efficiency, biological soil mixing efficiency, curve number, Manning's roughness coefficient for overland flow, USLE support practice factor, and filter strip width) in the Soil and Water Assessment Tool (SWAT). With this analysis we aimed to improve model parameterisation and calibration efficiency. In contrast to less sensitive parameters such as tillage depth and mixing efficiency we parameterised sensitive parameters such as curve number values in detail. In the second step the analysis consisted of varying management practices (conventional tillage, conservation tillage, and no-tillage) for different crops (spring barley, winter barley, and sugar beet) and varying operation dates. Results showed that the model is very sensitive to applied crop rotations and in some cases even to small variations of management practices. But the different settings do not have the same sensitivity. Duration of vegetation period and soil cover over time was most sensitive followed by soil cover characteristics of applied crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.