Abstract
The use of probabilistic optimization in structural design applications is hindered by the huge computational cost associated with evaluating probabilistic characteristics, where the computationally expensive finite element method (FEM) is often used for simulating design performance. In this paper, a Sequential Optimization and Reliability Assessment (SORA) method with analytical derivatives is applied to improve the efficiency of probabilistic structural optimization. With the SORA method, a single loop strategy that decouples the optimization and the reliability assessment is used to significantly reduce the computational demand of probabilistic optimization. Analytical sensitivities of displacement and stress functionals derived from finite element formulations are incorporated into the probability analysis without recurring excessive cost. The benefits of our proposed methods are demonstrated through two truss design problems by comparing the results with using conventional approaches. Results show that the SORA method with analytical derivatives is the most efficient with satisfactory accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.