Abstract

This work presents an application of the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) to the neutron transport Boltzmann equation that models a multiplying subcritical system comprising a nonfission neutron source to compute efficiently and exactly all of the first- and second-order functional derivatives (sensitivities) of a detector’s response to all of the model’s parameters, including isotopic number densities, microscopic cross sections, fission spectrum, sources, and detector response function. As indicated by the general theoretical considerations underlying the 2nd-ASAM, the number of computations required to obtain the first and second orders increases linearly in augmented Hilbert spaces as opposed to increasing exponentially in the original Hilbert space. The results presented in this work are currently being implemented in several production-oriented three-dimensional neutron transport code systems for analyzing specific subcritical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.