Abstract

The reliability assessment of structural systems presents a significant challenge in structural engineering. A commonly employed approximation is the First-Order System Reliability Method (FOSRM), which estimates system reliability using the FORM component reliabilities and sensitivity factors. An essential step in FORM involves transforming the random vector X into the standard vector U, often using the Rosenblatt transformation (RT). Several studies demonstrated that different conditioning orders in the RT yield different FORM component results. This study investigates how these differences on component level propagate into the FOSRM system level. We conducted several typical engineering case studies with various failure probabilities, system sizes, and dependency structures (Gaussian and Frank Copula). For the Frank Copula, different Rosenblatt conditioning orders systematically yielded different FOSRM results, with most cases showing differences between 10% and 30% in estimated failure probability. For some systems, these differences increased with system size, suggesting that greater variations might be observed for larger systems. Notably, systems with Gaussian Copula functions also proved vulnerable to the Rosenblatt conditioning order when different components were assessed with different conditioning orders. The observed differences were larger than previously reported and should be carefully considered in uniform safety assessments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.