Abstract

This paper presents an analytical solution for geometrically non-linear free vibrations of beams with elastically supported ends in the horizontal direction. The equation of motion is obtained by employing Hamilton's principle and assuming that horizontal inertia forces can be neglected. The Ritz method, with a continuum solution and an iterative procedure, are used for determining the frequencies and non-linear modes of vibrations. The orthogonality conditions for these modes are also discussed. Numerical results for various beam boundary conditions are presented and compared with available results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.