Abstract

The Bethe-Salpeter equation describing the interaction of two scalar particles via the exchange of a third scalar particle with mass μ≠0 is in configuration space a hyperbolic partial differential equation of fourth order which will be studied with the help of the Riemann method. This method yields two Volterra equations the solutions of which are special solutions of the Bethe-Salpeter equation. The wave function is a superposition of the special solutions. For the coefficients one gets a system of two integral equations. The Fredholm determinant of the system is the generalization of the nonrelativistic Jost function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.