Abstract

Formulation of the problem. The structure shown in Figure 1 is widely used to build spacecraft power supply systems. It contains a solar battery in series and voltage regulator, which a load is connected to its output. To supply power to the load when the solar panel has no or insufficient capacity, the power supply system uses a battery pack which is charged and discharged by means of a charge-discharge device connected between the output of the voltage regulator and the battery pack. The power supply can be used to build power supply systems for a wide range of autonomous objects, such as unmanned aerial vehicles with long flight times, unattended weather stations, and environmental monitoring stations. In a power supply system with the structure shown in Figure 1, each of the devices can stabilize the output voltage: a voltage regulator, a discharge device and a battery charger. In such a power supply system, the operation of the charger and the discharger are separated in time, allowing them to function together. The use as a charge-discharge boost-decrease reversible pulse voltage converter with a high efficiency allows minimizing the number of elements in the power circuit of the device due to the possibility of reversing the energy flow reversal, which will improve the weight and size characteristics of the system and increase to increase its reliability. The purpose is to show the feasibility of using a converter with a high efficiency factor and the possibility of reversing the energy flow as a charge-discharge device as part of the power supply system of an autonomous object. To develop a model and confirm the possibility of operating the pulse converter as a charger in two modes: in the mode of providing a given charging current of the battery and in the mode of charging the battery with a decreasing current at a given voltage on the battery. Results. The expediency of using a reversible pulse converter with a high efficiency factor and the possibility of reversing the energy flow as a charger in the power supply system of an autonomous object is shown. A model has been developed and confirmed of the converter as a charger in two modes: in the mode of providing a given charging current of the battery and in the mode of charging the battery with a decreasing current at a given voltage on the battery pack. Practical Significance. The use of a reversible pulse converter as a single charge-discharge converter in the power supply system of an autonomous object will improve the mass-size characteristics, efficiency and reliability of the power supply system and increase life time of active operation of autonomous object as a whole Keywords: power supply system, autonomous object, solar battery, accumulator battery, pulse converter, charge-discharge device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call