Abstract

In previous research by the authors, the semi-interlocking masonry (SIM) was investigated as infill panels for framed structures and its favourable seismic performance was established through laboratory tests. Confined semi-interlocking masonry (CSIM) is a new application of SIM that aims to enhance earthquake performance of confined masonry buildings. Numerical simulations are performed to estimate the structural capacity of CSIM buildings. Micro and macro-modelling strategies are two major approaches for numerical simulation of masonry buildings. This paper proposes a macro-model for CSIM buildings by using a resettable semi-active damper model to simulate the behaviour of the SIM panel. The hysteretic performance of CSIM walls using the proposed macro-model was compared with the load-displacement pushover curve resulting from the FEA micro-modelling approach. The acceptable match between the responses of CSIM walls obtained from the micro and the macro-model confirmed the capability of the proposed model to capture the capacity of CSIM walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call