Abstract
The pseudospectral time-domain (PSTD) method is a powerful approach for computing the single-scattering properties of arbitrarily shaped particles with small-to-moderate-sized parameters. In the PSTD method, the spatial derivative approximation based on the spectral method is more accurate than its counterpart based on the finite-difference technique. Additionally, the PSTD method can substantially diminish accumulated errors that increase with the spatial scale and temporal duration of simulation. We report on the application of the PSTD method to the scattering of light by nonspherical ice particles. The applicability of the PSTD method is validated against the Lorenz-Mie theory and the T-matrix method. The phase functions computed from the PSTD method and the Lorenz-Mie theory agree well for size parameters as large as 80. Furthermore, the PSTD code is also applied to the scattering of light by nonspherical ice crystals, namely, hollow hexagonal columns and aggregates, which are frequently observed in cirrus clouds. The phase functions computed from the PSTD method are compared with the counterparts computed from the finite-difference time-domain (FDTD) method for a size parameter of 20 and an incident wavelength of 3.7 microm. The comparisons show good agreement between the two methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.