Abstract
A pseudo-spectral approach to 2D vibrational problems arising in linear elasticity is considerede using differentiation matrices. The governing partial differential equations and associated boundary conditions on regular domains can be translated into matrix eigenvalue problems. Accurate results are obtained to the precision expected in spectral-type methods. However, we show that it is necessary to apply an additional “pole” condition to deal with ther=0 coordinate singularity arising in the case of a 2D disc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.