Abstract

This study explores the possibility of estimation of the sensible surface heat flux using satellite-derived surface temperature and road pavement temperature together with in-situ wind and air temperature measurements by the profile method. A 10-year series of data from the roadside weather observation network was used. This dataset contained wind (measured at 5.8–9.5 m above ground) and air temperature (measured at 2.6–4.8 m) together with road surface temperature. Another dataset consisted of 254 simultaneous MODIS observations. A high correlation (0.94) of the surface temperature measured by both methods was noted despite coarse pixel size. We considered satellite-derived surface temperature to determine the sensible heat flux by the profile method; these results were compared to the values obtained using road temperature measured by pavement-mounted sensors. While the overall correlation is relatively strong (0.70) and considerable systematic differences exist, the values of heat flux calculated at different locations show a high spatial coherence - either when using the in situ pavement temperature (correlation ranging from 0.84 to 0.94 for daytime and 0.63–0.84 for nighttime) or the satellite-derived temperature (correlation coefficient 0.72). In most cases, differences between the two flux estimates can be linked to local factors such as the land use structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.