Abstract

The morphological stability of spherical and cylindrical crystals and an infinite plane growing from a supersaturated solution is studied using the principle of maximum entropy production in the Mullins and Sekerka approximation. In contrast to the first two geometries, the computational results for a plane agree completely with the results obtained on the basis of the classical linear perturbation theory. The concept of the binodal of a morphological transition is introduced in order to interpret the results for the sphere and cylinder. The boundaries of the metastable region are investigated. Morphological phase diagrams of stable-unstable growth are presented in terms of the variables surface energy and supersaturation as well as the variables crystal size and supersaturation. The physical nature of the appearance of metastability in this system is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.