Abstract

In this paper separation-induced shock reflection is studied theoretically and experimentally. An analytical model is proposed to establish the connections among upstream conditions, downstream conditions and shock configurations. Furthermore, the minimum entropy production principle is employed to determine the incident shock angles as well as the criterion for the transition from regular reflection to Mach reflection, which agrees well with experimental results. Additionally, a solution path for a reflected shock that fulfills the minimum entropy production principle is found in the overall regular reflection domain, based on which the steadiest shock configuration may be determined according to upstream and downstream conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call