Abstract

In this paper, we present a new method for successfully simulating the dynamics of COVID-19, experimentally focusing on the third wave. This method, namely, the Method of Parallel Trajectories (MPT), is based on the recently introduced self-organized diffusion model. According to this method, accurate simulation of the dynamics of the COVID-19 infected population evolution is accomplished by considering not the total data for the infected population, but successive segments of it. By changing the initial conditions with which each segment of the simulation is produced, we achieve close and detailed monitoring of the evolution of the pandemic, providing a tool for evaluating the overall situation and the fine-tuning of the restrictive measures. Finally, the application of the proposed MPT on simulating the pandemic's third wave dynamics in Greece and Italy is presented, verifying the method's effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.