Abstract

We have combined an embedded-cluster model with an extension of the method of increments to treat the adsorption of molecules on a surface. In this way we are able to investigate the physisorption of CO on CeO(2)(110) at the MP2, MP4(SDTQ), and CCSD(T) levels with only moderate computational costs. We find that, at the CCSD(T) level, 25% of the adsorption energy originates from electron correlation. The interactions of the CO molecule with its five nearest cerium and oxygen neighbors in the surface layer make the largest contributions to the electron correlation. Approximately 97% of the adsorption-induced electron correlation energy part of the adsorption energy is recovered by the method of increments (in our chosen expansion), at the MP2 level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call