Abstract

Extraction of raw materials, especially in extremely harsh underground mine conditions, is irrevocably associated with high risk and probability of accidents. Natural hazards, the use of heavy-duty machines, and other technologies, even if all perfectly organized, may result in an accident. In such critical situations, rescue actions may require advanced technologies as autonomous mobile robot, various sensory system including gas detector, infrared thermography, image acquisition, advanced analytics, etc. In the paper, we describe several scenarios related to rescue action in underground mines with the assumption that searching for sufferers should be done considering potential hazards such as seismic, gas, high temperature, etc. Thus, possibilities of rescue team activities in such areas may be highly risky. This work reports the results of testing of a UGV robotic system in an underground mine developed in the frame of the AMICOS project. The system consists of UGV with a sensory system and image processing module that are based on an adaptation of You Only Look Once (YOLO) and Histogram of Oriented Gradients (HOG) algorithms. The experiment was very successful; human detection efficiency was very promising. Future work will be related to test the AMICOS technology in deep copper ore mines.

Highlights

  • Underground mining operations are inextricably related to various natural hazards that pose an increasingly higher risk on the health and life of underground workers

  • As the area of active workings is vast, with widely dispersed work places, and sectors with insufficient air supply or unacceptable concentration of dangerous gases may occur in case of some accidents, there is a need for development of robotics in the area of rescue operations and safety assessment

  • Few specific cases with different positions of human body have been considered in order to obtain a realistic testing set for the image analysis algorithms (YOLOv3 and Histogram of Oriented Gradients (HOG))

Read more

Summary

Introduction

Underground mining operations are inextricably related to various natural hazards that pose an increasingly higher risk on the health and life of underground workers. To perform a rescue operation or an investigation of underground workings, the robot has to be equipped with an appropriate mobile platform, steered by a control system, tuned to the underground conditions (humidity-resistant, able to move on uneven ground), possibly lightweight—to enable long battery-driven operation (Section 3.1). It must be equipped with reliable sensors, for example, infrared camera for human detection and depth camera enabling navigation, indoor localization of the robot, and recognition of a human based on image processing (Section 3.3).

State-of-the-Art
UGV Platform—A Brief Description
Control System
Sensory System
The “Zloty Stok” Gold and Arsenic Underground Historic Mine
The Scenarios of Experiments
General Concept
HOG Algoritm
YOLO Algorithm
Decision-Making
Results
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.