Abstract

This work evaluates the performance of the group contribution volume translated Peng–Robinson model when predicting the vapor–liquid equilibrium and single phase densities of 28 refrigerant mixtures with low global warming potential and zero ozone depletion potential. Cubic equations of state, and particularly the Peng–Robinson equation of state, are widely used in the refrigeration industry due to their easy applicability for new substances, and their low computational time, although generally lower prediction accuracies must be expected compared to multiparameter equations of state. The group contribution volume translated Peng–Robinson equation of state combines the Peng–Robinson equation of state with a new attraction term, improved mixing rules using a group contribution approach, and volume translation. The results are compared with the estimates obtained using the non-volume-translated Peng–Robinson equation of state, and a multiparameter equation of state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.