Abstract

A new derivation and interpretation of the energy balance formula for a continuum with propagating crack are given. Using the formula obtained in this way for the crack driving force, a Griffith's type criterion of crack growth in a thermo-mechanical quasistatic process of deformation and rupture in an arbitrary continuum is proposed. The modified Griffith criterion is then applied to the study to the study of rupture in a linear viscoelastic medium. Behavior of cracks in an unbounded plane loaded uniformly at infinity, or loaded by a pair of concentrated forces at the crack center is considered in detail. In the former case of an unstable crack, a delay of rupture in a certain range of loading is discovered. Thus, the kinetics of rupture rather than that of the crack in viscoelastic media for an ideal brittle model of rupture are established. For the latter case of a stable crack, a jumplike manner of rupture progression is found. The influence of the history of loading and creation of initial crack on the process of rupture is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.