Abstract

Software breast phantoms are increasingly seeing use in preclinical validation of breast image acquisition systems and image analysis methods. Phantom realism has been proven sufficient for numerous specific validation tasks. A challenge is the generation of suitably realistic small-scale breast structures that could further improve the quality of phantom images. Power law noise follows the noise power characteristics of breast tissue, but may not sufficiently represent certain (e.g., non-Gaussian) properties seen in clinical breast images. The purpose of this work was to investigate the utility of fractal Perlin noise in generating more realistic breast tissue through investigation of its power spectrum and visual characteristics. Perlin noise is an algorithm that creates smoothly varying random structures of an arbitrary frequency. Through the use of a technique known as fractal noise or fractional Brownian motion (fBm), octaves of noise with different frequency are combined to generate coherent noise with a broad frequency range. fBm is controlled by two parameters – lacunarity and persistence – related to the frequency and amplitude of successive octaves, respectively. Average noise power spectra were calculated and beta parameters estimated in sample volumes of fractal Perlin noise with different combinations of lacunarity and persistence. Certain combinations of parameters resulted in noise volumes with beta values between 2 and 3, corresponding to reported measurements in real breast tissue. Different combinations of parameters resulted in different visual appearances. In conclusion, Perlin noise offers a flexible tool for generating breast tissue with realistic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.