Abstract
In homogeneous fields, the advantages of forward linear prediction (LP) for processing 2D NMR data sets have long been recognized. In this paper, the forward LP method was employed to obtain high-resolution NMR spectra in inhomogeneous fields. Intermolecular multiple-quantum coherence (iMQC) signals are caused by intermolecular dipolar interactions and can be used to obtain 1D high-resolution NMR spectra from the 2D iMQC spectra acquired in inhomogeneous fields. However, when the 2D spectra are acquired with insufficient increments to save experimental time, wiggles around strong peaks and bad resolution will occur. Extending the data set by forward LP in the indirect dimension is a good way to improve spectral resolution. Compared to normal discrete Fourier transform, the forward LP method can shorten experimental time by a factor of four or more at the same level of sensitivity and resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.