Abstract

Abstract Multilayered wrapped vessel technology utilizes the compressive prestress induced during construction process to gain a considerable advantage over the monoblock vessels. The compressive prestress allows for more efficient use of construction material and more uniform distribution of stress throughout the vessel’s cross section. Analysis of the magnitude of prestress throughout the vessel’s thickness has been previously reported (Rasty, 1988). However, one major idealization in such analysis has been the assumption that the magnitude of induced prestress is constant around the circumference of the vessel. In this research, thermoelastic finite element method was utilized to simulate the construction process of one layer of the vessel. It was concluded that the compressive residual stress induced by the weld shrinkage varies through the circumference of the vessel by as much as 13.5 percent. Circumferential distributions of the prestress are presented and compared to the closed-form solutions (constant prestress assumption) in earlier works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.