Abstract

In the paper, the WL quasi-exact reinforcement theory of fibrous polymeric composites is improved. An optimum compatibility condition related to the transverse shear problem for a unit cell, which brings solutions closest to reality, is derived. This condition is formulated in the form of a linear combination of maximum radial and circumferential displacements. Optimum coefficients of this combination are determined by comparing analytical and numerical solutions for a test specimen in the form of a rectangular thin plate, which is in a plane strain state and is subject to selected loading schemes. The analytic solutions are obtained for a homogenized material by using the WL reinforcement theory. The numerical solutions are found for an actual heterogeneous composite material by using the finite-element method, and they verify the WL reinforcement theory, in particular, the admissibility of Hill’s assumption. An analysis performed for two composite materials shows that the improved WL reinforcement theory gives adequate displacement fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.