Abstract

The purpose of this study was to develop a mathematical model that can describe glucose degradation in a microbial fuel cell (MFC) with the use of finite difference approach. The dynamic model can describe both substrate and pH changes in the anode chamber of a double-chamber MFC. It was developed using finite differences and incorporates basic mass transfer concepts. Model simulation results could fit the experimental data for substrate consumption well, while there was a moderate discrepancy (maximum 0.11 pH unit) between the simulated pH and the experimental data. A parametric sensitivity analysis showed that increases in acetate and propionate consumption rates can cause great decrease in chemical oxygen demand (COD) in the anode chamber, while an increase in glucose consumption rate does not result in significant changes of COD reduction. Therefore, the rate limitation steps of glucose degradation are the oxidations of secondary degradation products of glucose (acetate and propionate). Due to the buffering effect of the nutrient solution, the increases in glucose, acetate and propionate consumption rates did not result in much change on pH of the anode chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.