Abstract

Results obtained by the authors in solving inverse coefficient problems are overviewed. The inverse problem under consideration is to determine a temperature-dependent thermal conductivity coefficient from experimental observations of the temperature field in the studied substance and (or) the heat flux on the surface of the object. The study is based on the Dirichlet boundary value problem for the nonstationary heat equation stated in the general $$n$$-dimensional formulation. For this general case, an analytical expression for the cost functional gradient is obtained. The features of solving the inverse problem and the difficulties encountered in the solution process are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.