Abstract

This paper investigates the identification of mechanisms of disc brake squeal by the application of a recently developed Empirical Mode Decomposition method (EMD). A known strength of the EMD is its adaptive nature in analyzing nonstationary data, with success in its original application to ocean mechanics. The EMD decomposes an original signal into a number of intrinsic mode functions (IMFs), with each IMF often containing distinct physical significance. Several sets of disc brake squeal data were obtained and processed by EMD. A typical set data is presented in this paper for discussion. Employing a sifting process in the EMD, four prominent squeal-related IMFs are identified in this set of data. The Hilbert transform is then used to analyze the frequency and amplitude contents of the four IMFs, and it is shown that the first IMF is dominant. The spectrogram method is applied to analyze the time-evolution of the frequency components of the IMFs in the squeal process. This analysis procedure confirms an important squeal mechanism, i.e., the squeal condition is governed by the coupling of in-plane and out-of-plane vibration modes of the rotor and the coalescence of their natural frequencies. The inverse approach outlined in this paper is shown to be useful for providing new insights and confirming established hypotheses of disc brake squeal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call