Abstract

Biphasic reacting systems contain effectively immiscible aqueous and organic liquid phases in which reactants, products, and catalysts can partition. These conditions allow novel synthesis paths, higher yields, and faster reactions, as well as facilitate product(s) separation. A systematic modeling framework of three modules has been developed to describe phase equilibria, reactions, mass transfer, and material balances of such processes. The recently developed group-contribution electrolyte model, e-KT-UNIFAC, is used to predict the partitioning and equilibria of electrolyte and nonelectrolyte species for a wide variety of reacting substances. Reaction kinetics and mass transfer are described by nonelementary reaction rate laws. Extents of reaction are used to calculate the species material balances. The resulting mathematical model contains only a few rate parameters to be regressed to a minimum of time-dependent data. In addition to describing the behavior of such systems, predictions can be made of th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call