Abstract

This paper describes how the current-injected (CI) method, which has been applied only to pulse-width modulation (PWM) DC-DC power converters, can be extended to quasi-resonant (QR) power converters. The methodology for extending this small-signal modeling approach is described in detail. It is also shown that QR dynamic models are easy to obtain since they are derived directly from PWM power converter models. These new models result in a unified block diagram from which zero-voltage-switching (ZVS) or zero-current-switching (ZCS) transfer functions of the basic topologies, such as buck, boost, and buck-boost operated in half-wave (HW) or full-wave (FW) modes, are found. As an application of this method, a ZVS boost power converter and ZCS boost power converter were fabricated and tested. In addition, small-signal models of these power converters were derived with the help of the state-space averaging (SSA) method. The agreement of the CI method simulations with the experimental results for the two QR power converters is comparable or better than that of the SSA method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call