Abstract

A combined experimental and computational methodology was used to determine the relevant strength and residual-stress parameters in a manufactured, high-fiber-volume-fraction multiply metal matrix composite (MMC). The method was similar to that previously demonstrated on single-fiber composites, which had an extremely low fiber volume fraction. Variabilities in residual stresses and debond strengths in high-fiber-volume-fraction multiply composites, as well as current demands on the micromechanics-based computational prediction and validation of complex composite systems, necessitated the establishment of the test methodology described here. The model material chosen for this investigation was a plasma-processed six-ply, unidirectional Sigma-1240/Ti-6Al-2Sn-4Zr-2Mo (wt pct) MMC containing 32 vol pct continuous fibers. Room-temperature transverse tensile experiments were conducted on cruciform specimens. In addition, rectangular specimens were also evaluated in order to verify their applicability in obtaining valid interfacial property data. Debonding events, evaluated at different positions within a given specimen geometry, were captured by stress-strain curves and metallographic examination. Analytical and finite-element stress analyses were conducted to estimate the geometrical stress-concentration factors associated with the cruciform geometry. Residual stresses were estimated using etching and computational procedures. For the cruciform specimens, the experimental fiber-matrix debond strength was determined to be 22 MPa. Separation occurred within the carbon-rich interfacial layer, consistent with some previous observations on similar systems. Thus, the cruciform test methodology described here can be successfully used for transverse interfacial-property evaluation of high-fiber-volume-fraction composites. For the rectangular specimens, the strain gages at different positions along the specimen width confirmed that the interface crack had initiated from the free edge and propagated inward. Hence, rectangular specimens cannot be used for valid interface strength measurements in multiply composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.