Abstract

This study describes the formation of highly efficient antiprotein adsorption random copolymer coating of poly(N,N-dimethylacrylamide-co-sulfobetaine methacrylate) (poly(DMA-co-SBMA)) on the fused-silica capillary inner wall. Firstly, the poly(DMA-co-SBMA)s with different feed ratio (SBMA/DMA) were synthesized via the reversible addition fragmentation chain transfer polymerization. And then, X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) were used to investigate the composition and hydrophilicity of poly(DMA-co-SBMA) coating formed on the glass slide surfaces. CA measurements revealed that the poly(DMA-co-SBMA) coating became more hydrophilic with the increment of feed ratio (SBMA/DMA), and at the same time, the XPS results showed that the coating ability was also increased with the increment of feed ratio. Followed, the copolymer was applied to coat the fused-silica capillary inner wall, and the coated capillary was used to separate the mixture of proteins (lysozyme, cytochrome c, ribonuclease A, and α-chymotrypsinogen A) in a pH range from 3.0 to 5.0. Under the optimum conditions, an excellent separation of basic proteins with peak efficiencies ranging from 551,000 to 1509,000 N/m had been accomplished within 10 min. Furthermore, the effect of coating composition on protein separation was also investigated through the comparison of separation efficiency achieved by using bare, PSBMA- and poly(DMA-co-SBMA)-coated capillary, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.