Abstract

Oxidative stress occurs when antioxidant defense mechanisms are overwhelmed by free radicals and may lead to DNA damage, which has been implicated in processes such as aging and diseases such as cancer. The two main techniques presently used to quantify DNA damage are measurement of 8-hydroxydeoxyguanosine and the Comet assay (also known as single-cell gel electrophoresis). The aim of this study was to apply the comet assay to equine peripheral blood mononuclear cells (PBMCs) and identify two conditions in which we hypothesized that oxidative DNA damage would be increased in PBMCs: aging and equine recurrent airway obstruction (RAO, a condition similar to human asthma). The images obtained were similar to those previously published for humans, cats, and dogs. The optimum concentration of H(2)O(2) to estimate susceptibility to exogenous damage was 50 microM. Mean intraassay coefficients of variation were 4.7 and 9.7% for endogenous and exogenous tail-DNA quantities, respectively, and 7.3 and 8.3%, respectively, for interassay coefficients. There was no significant difference in either endogenous or exogenous percentages of tail DNA for samples collected from six ponies on three consecutive days. There was no significant difference in endogenous, exogenous, or exogenous (corrected for endogenous) oxidative DNA damage between mature and aged ponies. However, young pony foals had significantly less endogenous DNA damage than mature or aged ponies (P < 0.05). RAO-affected horses without airway inflammation (i.e., in clinical remission) had significantly greater endogenous damage compared with non-RAO-affected control animals (P = 0.009). There was a significant correlation between endogenous percentage of tail DNA in PBMCs and red blood cell hemolysate glutathione concentration (r = 0.720; P < 0.001). In conclusion, the comet assay appears to be suitable for investigating DNA damage in equine PBMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.