Abstract
For acoustic propagation through a shallow ocean channel or waveguide, the coherence between different transmissions is controlled primarily by the roughness of the ocean surface and to a lesser degree by fluctuations in the volume. In this study, the coherent-to-incoherent intensity ratio (CTIR) is defined as a way to quantify the coherence between multipath transmissions and ocean surface rms wave height and wind speed. A theory that connects the CTIR and the coherent surface reflection coefficient is developed using both Kirchhoff and small-slope approximations as rough surface scattering models. The CTIRs have been evaluated over a period of several days using broad-band experimental results from shallow-water deployment of source and receiver arrays that span most of the water column. Estimates of wind speed and rms wave height obtained using these CTIR calculations are compared with environmental measurements to demonstrate the validity of the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.