Abstract

An eigenvalue analysis of the circular Mindlin plates with free boundary conditions is presented. The analysis is based on the Chebyshev-Fourier pseudospectral method. Even though the eigenvalues of lower vibration modes tend to convergence more slowly than those of higher vibration modes, the eigenvalues converge for sufficiently fine pseudospectral grid resolutions. The eigenvalues of the axisymmetric modes are computed separately. Numerical results are provided for different grid resolutions and for different thickness-to-radius ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.