Abstract
AbstractWith the continuous increase in computing capabilities, large-eddy simulation (LES) has recently gained popularity in applications related to flow, turbulence, and dispersion in the urban atmospheric boundary layer (ABL). Herein, we perform high-resolution building-scale LES over the Seoul, South Korea, city area to investigate the impact of inflow turbulence on the resulting turbulent flow field in the urban ABL. To that end, LES using the cell perturbation method for inflow turbulence generation is compared to a case where no turbulence fluctuations in the incoming ABL are present (unperturbed case). Validation of the model results using wind speed and wind direction observations at 3 m above ground level reveals minimal differences irrespective of the presence of incoming ABL turbulence. This is due to the high density of building structures present at the surface level that create shear instabilities in the flow field and therefore induce local turbulence production. In the unperturbed case, turbulent fluctuations are found to slowly propagate in the vertical direction with increasing fetch from the inflow boundaries, creating an internal boundary layer that separates the turbulent region near the building structures and the nonturbulent flow aloft that occupies the rest of the ABL. Analysis of turbulence quantities including energy spectra, velocity correlations, and passive scalar fluxes reveals significant underpredictions that rapidly grow with increasing height within the ABL. These results demonstrate the need for realistic inflow turbulence in building-resolving LES modeling to ensure proper interactions within the ABL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.