Abstract

The present work discusses a solution procedure for heterogeneous media three-dimensional potential problems, involving nonlinear boundary conditions. The problem is represented mathematically by the Laplace equation and the adopted numerical technique is the boundary element method (BEM), here using velocity correcting fields to simulate the conductivity variation of the domain. The integral equation is discretized using surface elements for the boundary integrals and cells, for the domain integrals. The adopted strategy subdivides the discretized equations in two systems: the principal one involves the calculation of the potential in all boundary nodes and the secondary which determines the correcting field of the directional derivatives of the potential in all points. Comparisons with other numerical and analytical solutions are presented for some examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.