Abstract
The classic Born model can be used to predict salt partitioning properties observed in hydrated polymers, but there are often significant quantitative discrepancies between these predictions and the experimental data. Here, we use an updated version of the Born model, reformulated to account for the local environment and mesh size of a hydrated polymer, to describe previously published NaCl, KCl, and LiCl partitioning properties of model cross-linked poly(ethylene glycol) diacrylate polymers. This reformulated Born model describes the influence of polymer structure (i.e., network mesh size and its relationship with water content) and external salt concentration on salt partitioning in the polymers with a significant improvement relative to the classic Born model. The updated model most effectively describes NaCl partitioning properties and provides an additional fundamental understanding of salt partitioning processes, for NaCl, KCl, and LiCl, in hydrated polymers that are of interest for a variety of environmental and biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.