Abstract

This paper studies the bond valence method (BVM) and its application in the non-isovalent semiconductor alloy (GaN)1−x(ZnO)x. Particular attention is paid to the role of short-range order (SRO). The theoretical standing of the BVM is examined by density-functional theory (DFT) calculations. Combining the BVM with Monte-Carlo simulations and a DFT-based cluster expansion model, bond-length distributions and bond-angle variations are predicted. The connection between bond valence and bond stiffness is also discussed. Finally the BVM is extended to the modelling of an interatomic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.