Abstract

Abstract Reconstruction of gear tooth surfaces from point clouds obtained by noncontact metrology machines constitutes a promising step forward not only for a fast gear inspection but also for reverse engineering and virtual testing and analysis of gear drives. In this article, a new methodology to reconstruct spiral bevel gear tooth surfaces from point clouds obtained by noncontact metrology machines is proposed. The need of application of a filtering process to the point clouds before the process of reconstruction of the gear tooth surfaces has been revealed. Hence, the bilateral filter commonly used for 3D object recognition has been applied and integrated in the proposed methodology. The shape of the contact patterns and the level of the unloaded functions of transmission errors are considered as the criteria to select the appropriate settings of the bilateral filter. The results of the tooth contact analysis of the reconstructed gear tooth surfaces show a good agreement with the design ones. However, stress analyses performed with reconstructed gear tooth surfaces reveal that the maximum level of contact pressures is overestimated. A numerical example based on a spiral bevel gear drive is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.