Abstract
Purpose: The purpose of the present study was to demonstrate the procedure for determining the thermal conductivity of a solid material with relatively high thermal conductivity, using an original self-designed apparatus. Design/methodology/approach: The thermal conductivity measurements have been performed according to the ASTM D5470 standard. The thermal conductivity was calculated from the recorded temperature values in steady-state heat transfer conditions and determined heat flux. Findings: It has been found from the obtained experimental results that the applied standard test method, which was initially introduced for thermal conductivity measurements of thermal interface materials (TIMs), is also suitable for materials with high thermal conductivity, giving reliable results. Research limitations/implications: The ASTM D5470 standard test method for measurement of thermal conductivity usually gives poor results for high conductive materials having thermal conductivity above 100 W/mK, due to problems with measuring heat flux and temperature drop across the investigated sample with reasonably high accuracy. Practical implications: The results obtained for the tested material show that the presented standard test method can also be used for materials with high thermal conductivity, which is of importance either for the industrial or laboratory applications. Originality/value: The thermal conductivity measurements have been carried out using an original self-designed apparatus, which was developed for testing broad range of engineering materials with high accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Achievements in Materials and Manufacturing Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.