Abstract

AbstractA fast and convenient technique for Asphalt Binders was proposed in this paper, which was based on air-jet pressurized and laser to detect the transient deformation and creep recovery of asphalt. Taking five kinds of asphalt and modified asphalt commonly used in China as the research objects, the performance of asphalt were tested and analyzed by adopting the Penetration Test, Dynamic Shear Rheological (DSR) Test, Multiple Stress Creep and Recovery (MSCR) Test and the proposed test technology. The results verified the feasibility of the proposed test technology and the correlation between the traditional tests and the proposed test technology. The results demonstrated that the proposed test technology had good discrimination ability for different kinds of asphalt and could effectively reflect the performance differences. The new test protocol was similar to the Penetration Test. There was a significant correlation between the maximum deformation index and penetration index. The correlation coefficient was above 0.8, and the p value was much less than 0.01. It could be used as a possible alternative to the Penetration Test. The proposed new test was relatively convenient and fast compared with the dynamic shear test. There was a linear correlation between the maximum deflection index and the complex shear modulus G*, and the correlation coefficient between the recovery index and the phase angle is above 0.8, which indicated that the proposed new test and the DSR test had a significant correlation. There was also a good correlation between the creep recovery index of MSCR test and the recovery data of the proposed new test method. The research results provided a new solution for the performance test and evaluation of asphalt in China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.