Abstract
The $\chi^2$ principle and the unbiased predictive risk estimator are used to determine optimal regularization parameters in the context of 3D focusing gravity inversion with the minimum support stabilizer. At each iteration of the focusing inversion the minimum support stabilizer is determined and then the fidelity term is updated using the standard form transformation. Solution of the resulting Tikhonov functional is found efficiently using the singular value decomposition of the transformed model matrix, which also provides for efficient determination of the updated regularization parameter each step. Experimental 3D simulations using synthetic data of a dipping dike and a cube anomaly demonstrate that both parameter estimation techniques outperform the Morozov discrepancy principle for determining the regularization parameter. Smaller relative errors of the reconstructed models are obtained with fewer iterations. Data acquired over the Gotvand dam site in the south-west of Iran are used to validate use of the methods for inversion of practical data and provide good estimates of anomalous structures within the subsurface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.