Abstract

To investigate the value of texture analysis in magnetic resonance images for the evaluation of Gleason scores (GS) of prostate cancer. Sixty-six prostate cancer patients are retrospective enrolled, which are divided into five groups namely, GS = 6, 3 + 4, 4 + 3, 8 and 9-10 according to postoperative pathological results. Extraction and analysis of texture features in T2-weighted MR imaging defined tumor region based on pathological specimen after operation are performed by texture software OmniKinetics. The values of texture are analyzed by single factor analysis of variance (ANOVA), and Spearman correlation analysis is used to study the correlation between the value of texture and Gleason classification. Receiver operating characteristic (ROC) curve is then used to assess the ability of applying texture parameters to predict Gleason score of prostate cancer. Entropy value increases and energy value decreases as the elevation of Gleason score, both with statistical difference among five groups (F = 10.826, F = 2.796, P < 0.05). Energy value of group GS = 6 is significantly higher than that of groups GS = 8 and 9-10 (P < 0.005), which is similar between three groups (GS = 3 + 4, 8 and 9-10). The entropy and energy values correlate with GS (r = 0.767, r = -0.692, P < 0.05). Areas under ROC curves (AUC) of combination of entropy and energy are greater than that of using energy alone between groups GS = 6 and ≥7. Analogously, AUC of combination of entropy and energy are significantly higher than that of using entropy alone between groups GS≤3 + 4 and ≥4 + 3, as well as between groups GS≤4 + 3 and ≥8. Texture analysis on T2-weighted images of prostate cancer can evaluate Gleason score, especially using the combination of entropy and energy rendering better diagnostic efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call