Abstract

Nowadays, there is a global concern over water quality and the impact of contamination on both natural ecosystems and human well-being. Plastics, ubiquitous in modern life, may release harmful chemicals when they reach aquatic environments. Among them, bisphenol A (BPA) and its alternatives, such as bisphenol S (BPS), bisphenol F (BPF), and others, are of special concern because their presence in water systems can have detrimental effects on human health and aquatic organisms due to their endocrine-disrupting properties. This study explores the potential of terpenoids, sustainable and environmentally friendly solvents, for efficiently removing bisphenols from contaminated environmental water. Using an in silico approach based on the Conductor-like Screening Model for Realistic Solvents (COSMO-RS) theory, >30 terpenoids were screened, and carvone was found to be an excellent candidate due to its high solvent capacity and low toxicity. The impact of pH, temperature, stirring conditions, and sample:extractant phase ratios on the extraction efficiency were investigated. A design of experiments revealed optimal conditions for the extraction process and demonstrated that carvone can effectively extract bisphenols (nearly 100 % for most of them) under a wide range of conditions, showing the robustness and efficiency of the extraction method, even in environmental samples. The paper provides valuable insights into the potential of terpenoids, specifically carvone, as a sustainable and eco-friendly solvent for removing bisphenol contaminants from environmental water bodies. The findings of this study offer a promising solution to address water contamination issues, aligning with the principles of Green Chemistry and contributing to a more environmentally responsible approach to water remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.