Abstract
The subject of this research is methods of application of terahertz (sub-terahertz) inspection systems for detecting concealed carry weapon, makeshift explosive devices made of nonstandard materials and other prohibited substances. The object of this research is the detection of concealed carry weapon, makeshift explosive devices made of nonstandard materials and other prohibited substances. The authors examine the application of terahertz (sub-terahertz) inspection systems of compact and portal (stationary) types in the integrated security systems. Special attention is given to the options of using these complexes for expanding the capabilities of the subsystems of video monitoring and detection of sabotage and terrorist means. The conclusion is made on the need to develop the tactics for application of the existing systems of personal security screening, the operation of which is based on radio camera imaging in terahertz (sub-terahertz) frequency range. The authors’ special contribution lies in formulation of recommendations that contain the options of using terahertz (sub-terahertz) inspection systems of various types for detecting concealed carry weapon, makeshift explosive devices made of nonstandard materials and other prohibited substances. The acquire results would help to improve the efficiency of organizing the onsite pass control. The scientific novelty consists in fact that the authors are first within the framework of development of the tactic of using terahertz (sub-terahertz) inspection system to develop proposals of implementation of such means as part of the integrated security systems for detecting concealed carry weapon, makeshift explosive devise made of nonstandard materials and other prohibited substances that differ in carrying out the inspection procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.