Abstract

Temporal moments of solute transport through porous media are calculated to analyze the time average spatial distribution of solute plume. Simulation of spatially and temporally distributed breakthrough curves (BTCs) is computationally rigorous and lacking the explanation about overall plume evolution within porous media. However, temporal moment provides an attractive and simple solution to study the plume behavior. In this study, temporal moments are presented to interpret solute plume behavior in heterogeneous porous media such as hydraulically coupled stratified porous media with different time-dependent dispersion models. Governing equations of solute transport have been solved numerically using Crank-Nicolson scheme, and further solute concentration data has been utilized to calculate moments of solute concentration using numerical integration. The effect of various parameters such as mass-transfer coefficient, pore-water velocity, time-dependent dispersion coefficients, and porosity of mobile region on the transport of solute has been studied through sensitivity analyses. Temporal moment analysis revealed that the mass recovery, mean residence time, and variance are sensitive to the estimated parameters. Numerical results suggested that the asymptotic time-dependent dispersion function with mobile–immobile model represents the plume spreading through heterogeneous porous media in a more realistic manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.