Abstract

A technology is proposed to improve the efficiency of heat devices operating on gas fuel. The technology is based on the use of a method of burning depleted ionized gas fuel in an electric field. Application of the method allows to reduce the formation of soot deposits and provides a more complete combustion of the gas. Increasing the efficiency of heating devices is achieved due to the formation of an electric field by including an ionizing radiation device in the structure of the gas stove. The energy of the ionizing radiation of the gas fuel provides the formation of Coulomb forces. Combustion intensifies, and convective heat exchange increases due to electroconvection. The design of the ionizing radiation device includes electrodes located at a distance from each other. Power is supplied from a voltage source. The electrodes are fixed using porcelain ring insulators. The proposed design solutions provide not only a decrease in gas fuel consumption, but also an increase in the flame temperature and the power of thermal radiation not only in the visible, infrared and ultraviolet ranges. Additional electrolysis of the fuel mixture, and the acceleration of its combustion rate is achieved due to ionization. The results of experimental studies to determine the parameters of the combustion processes of gas fuel (isobutane (CH3-CH(CH3)-CH3) – 72 %, butane (CH3-CH2– CH2-CH3) – 22 %, propane (C3H8) – 6 %) are presented. It was found that with a variable electric field strength for gas ionization, an increase in the temperature of the frying bed by 39%, heat transfer by 2 times, a decrease in carbon oxides by 31–36%, and a decrease in gas fuel consumption by 26% are achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.