Abstract

BackgroundCoronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers. COVID-19 patients may also suffer from serious symptoms including shortness of breathing, chest pressure and pain, as well as loss of daily routine habits, pointing out to a sever reduction in the quality of life. COVID-19 has afftected almost all countries, however, the United States contains the highest number of infection (> 1,595,000 cases) and deaths cases (> 95,000 deaths) in the world until May 21, 2020. Finding an influential treatment strategy against COVID-19 can be facilitated through better understanding of the virus pathogenesis and consequently interrupting the biochemical pathways that the virus may play role in human body as the current reservoir of the virus.ResultsIn this study, we combined system biology and bioinformatic approaches to define the role of coexpression of angiotensin-converting enzyme 2 (ACE2), neprilysin or membrane metallo-endopeptidase (MME), and carbonic anhydrases (CAs) and their association in the pathogenesis of SARS-CoV-2. The results revealed that ACE2 as the cellular attachment site of SARS-CoV-2, neprilysin, and CAs have a great contribution together in the renin angiotensin system (RAS) and consequently in pathogenesis of SARS-CoV-2 in the vital organs such as respiratory, renal, and blood circulation systems. Any disorder in neprilysin, ACE2, and CAs can lead to increase of CO2 concentration in blood and respiratory acidosis, induction of pulmonary edema and heart and renal failures.ConclusionsDue to the presence of ACE2-Neprilysin-CA complex in most of vital organs and as a receptor of COVID-19, it is expected that most organs are affected by SARS-CoV-2 such as inflammation and fibrosis of lungs, which may conversely affect their vital functions, temporary or permanently, sometimes leading to death. Therefore, ACE2-Neprilysin-CA complex could be the key factor of pathogenesis of SARS-CoV-2 and may provide us useful information to find better provocative and therapeutic strategies against COVID-19.

Highlights

  • Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers

  • Identification of Coexpression of angiotensin-converting enzyme 2 (ACE2), Neprilysin, and Carbonic anhydrase (CA) The coexpression study revealed that ACE2, neprilysin, and CA are codominantly expressed in the local renin angiotensin system (RAS)

  • The analysis showed that at least 22 genes were coexpressed in the local RAS, which can be linked to COVID-19

Read more

Summary

Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers. Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the worldwide outbreak of coronavirus disease 2019 (COVID-19), the number of infected and death cases have exceeded 4,300,000 and 290,000, respectively until May 21, 2020. The COVID-19 patients suffer from several clinical symtoms including fever, dry cough, fatigue, headache, sore throat, loss of taste and smell, aches and pains, diarrhea, skin rashes and/or discoloration of fingers and toes, shortness of breathing, chest pressure and pain, and loss of speech and movement. For COVID-19 prevention, the studies can focus on the results obtained from SARS-CoV vaccine clinical trials such as application of DNA, viral vector, subunit, viral-like particle, inactivated virus, and live-attenuated virus platforms [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call